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Microstructure characterization and reconstruction have become indispensable parts of computational
materials science. The main contribution of this paper is to introduce a general methodology for practical
and efficient characterization and reconstruction of stochastic microstructures based on supervised
learning. The methodology is general in that it can be applied to a broad range of microstructures
(clustered, porous, and anisotropic). By treating the digitized microstructure image as a set of training
data, we generically learn the stochastic nature of the microstructure via fitting a supervised learning
model to it (we focus on classification trees). The fitted supervised learning model provides an implicit
characterization of the joint distribution of the collection of pixel phases in the image. Based on this
characterization, we propose two different approaches to efficiently reconstruct any number of statis-
tically equivalent microstructure samples. We test the approach on five examples and show that the
spatial dependencies within the microstructures are well preserved, as evaluated via correlation and
lineal-path functions. The main advantages of our approach stem from having a compact empirically-
learned model that characterizes the stochastic nature of the microstructure, which not only makes
reconstruction more computationally efficient than existing methods, but also provides insight into
morphological complexity.

© 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

To date, considerable research has been conducted towards
computational discovery and design of advanced materials. Many
of these works are focused on a class of materials that are
composed of multiple distinct constituents/phases and have an
underlying stochastic behavior. This class is termed random het-
erogeneous materials and is ubiquitous in science and engineering
(i.e., polymer nanocomposites) as well as the nature (i.e., sand-
stone) [1]. We consider the problem of developing a general
methodology for characterization and reconstruction of a broad
range of random heterogeneous microstructures. The major chal-
lenges with this problem are twofold: (1) How to efficiently and
accurately quantify (characterize) the stochastic nature of high
dimensional data embedded in the material morphology and (2)
how to use this characterization to generate (reconstruct) virtual
ley).

lsevier Ltd. All rights reserved.
microstructure samples that are statistically equivalent, preserving
as much of the inherent stochasticity as possible. In this paper, we
address this problem via a supervised learning approach in which
we first fit a flexible model to the high dimensional data and then
employ the fitted model for reconstruction. It should be mentioned
that by “microstructure” we mean a structure whose microscopic
features are smaller than the characteristic length-scale of the
macroscopic sample but larger than the molecular spatial ar-
rangements [2]. We note, however, that the concept is relative and
the scales can be transcended (see for example [3e5]).

Recent advances in imaging techniques [6e9] have enabled the
collection of digital structural information at various scales. The
need for computational characterization and reconstruction of the
collected data for understanding the role of structure in processing-
structure-property linkage is highlighted in the literature [10e20].
They provide the means for building an ensemble of representative
volume elements (RVE's) or statistical volume elements (SVE's),
which is used for estimating materials properties (see Refs. [10,11]
for discussion on RVE's and SVE's). Broadly, we have classified
related prior works on characterization and reconstruction into
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three categories based on the reconstruction procedure: (1) Opti-
mization, (2) Random Field, and (3) Texture Synthesis and the closely-
related multiple-point statistics (there are some works that do not
fall into the aforementioned categories though. See Refs. [21,22]).
We note that throughout the paper we use the term “image” to
refer to a microstructure sample, either the original or recon-
structed, because the samples are represented as images (e.g., a
two-phase microstructure sample is represented as a binary black/
white image, where the color corresponds to the morphological
phase at that pixel location).

In the first category, the reconstructed image is iteratively
adjusted (i.e., optimized) so as to minimize an appropriately
defined cost function that measures the statistical differences be-
tween the original image and the reconstructed one. The choice of
the cost function depends on the characterization scheme. One set
of approaches [1,23e34] characterize the material structure via
various correlation functions (i.e., two-point, lineal-path, and two-
point cluster). In reconstruction, first an initial random image with
the same volume fraction1 (VF) for all the phases/constituents as in
the original image is generated. Then, its pixels are iteratively
swapped via some heuristic optimization algorithm (i.e., simulated
annealing [27,32,34] or genetic algorithm [35,36]) to reduce some
cost function that measures the differences between the correla-
tion functions of the original image and those of the reconstructed
one (as most microstructures cannot be characterized solely by one
specific correlation function, usually multiple of them are incor-
porated into the cost function). Although several improvements in
the pixel-swapping heuristics have been developed [26,33,37e40],
the optimization is still computationally expensive and prohibitive
for reconstructing large/anisotropic images. In addition, correlation
functions are infinite dimensional in a sense that they do not (at
least explicitly) represent the results for a specific set of descriptors
(i.e. average particle size or nearest neighbor). Although several
analytical expressions have been developed in the literature to
relate the correlation functions to the physical descriptors of the
structure, they are problem-dependent (see Refs. [23,27,41e46] for
some examples considering two-point correlation function).

A second set of optimization-based approaches uses physical
descriptor characteristics of the original image to characterize the
microstructure [41,47e50] and the optimization process aims to
preserve as many important descriptor characteristics as possible.
The choice of physical descriptors depends on the materials and
properties of interest. For example, because transport processes in
particulate heterogeneous systems are sensitive to nearest
neighbor distances between particles [2], onemight choose nearest
neighbor distances between particles as one of the descriptors and
attempt to match its distributional characteristics (such as the
mean and variance) in the original and reconstructed samples. This
method sensibly characterizes the topological features and hence
can be used for design [17] purposes (for instance, one can adjust
the distribution of nearest neighbors and investigate how it would
affect the material property). However, it requires image analysis
(for extracting the characteristics of the descriptors from the orig-
inal image), and one needs to define/choose the appropriate de-
scriptors beforehand. In addition, extension of the methodology to
reconstruct microstructures with irregular inclusions or those that
are dense and multiphase is nontrivial. The associated computa-
tional costs are generally lower than the previous approach but
they will increase if a pixel/voxel moving scheme [41] is required
for matching some of the descriptor (i.e., nearest neighbor).

In the second category, random fields (RFs) are utilized for
1 Area Fraction (AF) in 2D. We use the common acronym VF throughout the
paper but the meaning is clear from the context.
material (in particular porous media) characterization and recon-
struction [51e54]. These methods are faster than correlation
function-based ones and model the microstructure phase by level-
cutting a relatively simple Gaussian RF. They rely heavily on cor-
relation functions, in the sense that the Gaussian RF model is fitted
bymatching its correlation functions to those of the training image.
The methodology is usually restricted to bi-phase isotropic struc-
tures based on only two-point correlation function and hence lacks
high versatility accuracy for microstructures that cannot be char-
acterized solely by their two-point correlation function [27]. In
Refs. [53,55,56] RF's were integrated with an optimization-based
approach by post-processing an RF-based reconstructed image to
reduce the differences between correlation functions. Although this
approach improves the accuracy (in matching correlation func-
tions), it is still subject to the limitations discussed above.

Recently, texture synthesis methods that were originally
developed for computer graphics problems [57e59] have been
applied to material characterization and reconstruction. This
approach assumes that the microstructure behaves as a stationary
Markov random field (MRF) (see Sec. 2.1 for further discussion on
this property). In this approach, no characterization is done and an
image is reconstructed pixel-by-pixel (voxel in 3D) in a specific
order (i.e. raster scan). Each pixel's value in the reconstructed image
is found by searching for the pixel (or a set of pixels) in the original
image whose neighboring pixels best match the neighbors of the
pixel to be generated. Different methods differ in their choice of
neighborhood geometry, definition of similarity, and search
method. Sundaraghavan [60] uses a non-causal neighborhood (see
Sec. 2.2.1) to reconstruct a 3D structure based only on three 2D
images taken along orthogonal directions and validates the results
by comparing correlation functions of the original and recon-
structed images. Liu et al. [13] use the texture synthesis method-
ology developed in Refs. [57], but instead of choosing the single
pixel with the best-matched neighborhood, they randomly choose
from among a set of pixels with closely-matched neighborhoods (as
in Ref. [59]). They reconstruct multi-phase 2D/3D structures via a
causal neighborhood (see Sec. 2.2.2) and show various material
characteristics (i.e. correlation functions and Minkowski func-
tionals) are well preserved. Texture synthesis based methods are
applicable to isotropic, anisotropic, and multi-phase materials.

Works similar to texture synthesis can also be found in the earth
science literature [61e65] where characterization and reconstruc-
tion of porosity in geological structures (such as soil and sandstone)
is of particular interest. The methodology used in these works is
based on multiple-point statistics, characterizing the structure by
calculating and storing the conditional probabilities of finding a
specific phase at a pixel, given the phases of a particular configu-
ration of neighboring pixels. Like the texture synthesis approach,
the multiple-point statistics approaches implicitly characterize the
microstructure by exhaustive enumeration of all possible phase
combinations for all possible neighborhood configurations that
have occurred in the training image. Reconstruction is accom-
plished pixel-by-pixel, also similar to the texture synthesis recon-
struction, by searching for the training neighborhood that best
matches that of the pixel being reconstructed and subsequently
sampling from the conditional probability for that neighborhood.
Different methods vary in their choice of neighborhood geometry,
search method, and reconstruction order (i.e., random or raster
scan). Wu et al. [61] use two small causal neighborhoods, a two-
pixel neighborhood for boundary pixels and a five-pixel neigh-
borhood for the other pixels, for characterization. Hajizadeh et al.
[63,64] and Okabe et al. [64] use the algorithm developed in
Ref. [65] and a non-causal neighborhood for characterization. In
Refs. [61,63,64], the original image must be stationary and the ge-
ometry and size of the neighborhood are determined manually.



Fig. 1. A square (non-causal) neighborhood Nij of Xij with size w¼h¼2. The response
pixel and those within Nij are color-coded as, respectively, black and blue (the colors do
not represent phase values. The reader is referred to the web version of this article for
interpretation of the colors).
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Our fundamental idea is to treat the microstructure character-
ization problem as a data-driven supervised learning (aka machine
learning or statistical learning) one. Specifically, using the micro-
structure image as the training dataset, we fit a supervised learning
model to predict the phase of an image pixel as a function of the
phases of a (suitably large) neighborhood of its surrounding pixels.
In supervised learning parlance, the response variable is the phase
of a pixel, and the predictor variables are the phases of some
neighborhood of surrounding pixels. The fitted supervised learning
model can be viewed as a predictive model representing the con-
ditional distribution of each pixel's phase, given its neighbors'
phases. This set of conditional distributions embodied by the su-
pervised learning model provides an implicit characterization (Sec.
2.1) of the full joint distribution of all the pixels within the image,
which is the most complete and generic statistical characterization
possible. It also provides a computationally efficient means of
generating statistically equivalent reconstructed microstructures
(Sec. 2.2). In theory, any supervised learning (Sec. 2.3) method can
be used but we focus on classification trees because of their
computational efficiency, interpretability, and suitability for
handling categorical variables (pixel phases). It should be noted
that fitting classification trees as we do is fundamentally different
than using a tree structure to exhaustively enumerate all of the
phase combinations and neighborhood configurations that have
occurred in the training image, as is done in some of the multiple-
point statistics [63] or texture synthesis [13] methods. In Sec. 3, we
test the algorithm on five different examples and illustrate that the
model can characterize and reconstruct a wide range of stochastic
microstructures (e.g., isotropic or anisotropic).

Themajor contribution of this paper is to use, for the first time to
the best of the authors' knowledge, a direct supervised learning
approach for the problem of microstructure characterization and
reconstruction. Desirable aspects of this approach are that (like
texture synthesis and the multiple-point statistics methods) it is
more flexible and generic than descriptor-based approaches, being
applicable to microstructures that are isotropic or anisotropic and
with randomly varying, irregularly-shaped inclusions; and (unlike
texture synthesis and the multiple-point statistics methods) it also
results in a compact model which characterizes the stochastic na-
ture of the microstructure and is learned in a completely data-
driven manner. Texture synthesis methods involve no fitted
model to characterize the microstructure, and reconstruction is
done by exhaustively searching for similar neighborhoods in the
original image. The multiple-point statistics methods similarly
involve no fitted model, other than exhaustive enumeration of
every phase combination for every neighborhood configuration
that has occurred at least once in the training image. Having a
compact model entails a number of advantages including signifi-
cant computational efficiency when reconstructing new samples
and a means of comparing different microstructures that provides
insight into the material's morphology. Moreover, the model-based
supervised learning framework has the potential to be extended in
a number of directions, which are mentioned in Sec. 4.

2. Supervised learning approach for microstructure
characterization and reconstruction

2.1. Overview of the approach and assumptions

Let X denote the collection of pixels in the original (training)
microstructure image of size n1 (rows)� n2 (columns). The pixels in
X are ordered, and each one is a categorical variable that indicates
the phase at that spatial location. While the proposed algorithm is
applicable to multi-phase microstructures, in this paper we limit
ourselves to bi-phase materials for notational and illustrative
simplicity. Therefore, the elements in X are the binary variables,
Xij2{0,1} for i¼1,2,…,n1 and j¼1,2,…,n2. X can be thought of as a
random sample from its underlying full joint distribution, denoted
by f(X). From this perspective, in order to reconstruct a new but
statistically equivalent image Y (of any size) we must learn f(X)
from the training image and use it for reconstruction. With no as-
sumptions, it is obviously impossible to estimate an extremely high
dimensional distribution like f(X) from only a single realization (the
training image).

To overcome this difficulty, we assume that the random
microstructure can be modeled as a form of stationary MRF, which
is also assumed in the texture synthesis-based works [13,60].
Intuitively, the Markovian assumption means the following: Given
a sufficiently large neighborhood Nij surrounding pixel Xij (see
Fig. 1), there is no additional information contained in the
remaining pixels of X that could further improve the predictability
of Xij. Let X(�ij)≡{Xmn:(m,n)s(i,j), m¼1,2,…, n1, n¼1,2,…, n2} denote
the set of all pixels in X excluding Xij. Mathematically, the stationary
MRF assumptions are:

� Locality: f(XijjX(�ij))¼f(XijjNij) for a sufficiently large
neighborhood Nij.

� Stationarity: f(XijjNij) does not depend on pixel location (i,j).

In the preceding, it should be noted that the conditional dis-
tribution f(XijjNij) is a Bernoulli distribution with an event proba-
bility (the event being defined as Xij¼1) that is some function of the
pixel values in Nij. Essentially, the goal of the supervised learning
step is to learn this predictive function by fitting an appropriate
supervised learning model to the training image. The appropriate
size of Nij is typically on the order of the largest topological feature
in X, although this also can be learned from the data and the al-
gorithm is not significantly sensitive to it (we discuss this further in
Sec. 2.3 and Sec. 3.5). Regarding the stationarity assumption, we
temporarily ignore any boundary effects and discuss them in Sec.
2.4.

Fig. 2 is a flowchart of the basic procedure to reconstruct a new
image Y that is statistically equivalent to X. The training data, to
which the supervised learning model for f(XijjNij) is fitted, consists
of the paired observation (Xij, Nij) for i2{1,2,…, n1} and j2
{1,2,…, n2}. In Sec. 2.3, we discuss details on the choice ofNij and the



Fig. 2. Flowchart of the supervised learning approach for microstructure characterization and reconstruction.
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supervised learning algorithm for empirically estimating f(XijjNij).
Given the fitted supervised learning model for f(XijjNij), various
methods can be used for generating a statistically equivalent
reconstructed image Yas a random sample from a joint distribution
consistent with f(X). In Sections 2.2.1 and 2.2.2 we discuss,
respectively, non-causal and causal approaches for accomplishing
the reconstruction. In Sec. 2.4 details regarding initialization and
boundary effects are discussed.

2.2. Reconstruction

We present two approaches e non-causal and causal e for
generating reconstructed images, each having their respective
advantages.

2.2.1. Non-causal approach
The non-causal reconstruction procedure is based on Gibbs

sampling [66]. Gibbs sampling is a general statistical technique for
drawing a random sample Y from some multivariate
distribution f(Y). Gibbs sampling is useful when it is difficult to
directly sample from f(Y), but much easier to sample from the
conditional distributions f(YijjY(�ij)) for each element Yij of Y. It is an
iterative procedure, in which one starts with some initial Y.
Sequentially, each element Yij is generated anew from f(YijjY(�ij)).
When the last element of Y is generated, one starts over and
sequentially generates each element of Y again from f(YijjY(�ij)),
using the most recently generated Y(�ij). The procedure iterates,
generating Y as many times as needed, until a form of statistical
convergence is reached. After convergence, the generated Y in the
last iteration can be viewed as a random sample from f(Y).

For our application, by the stationary MRF assumption, the
conditional distributions f(YijjY(�ij))¼f(YijjNij) are independent of
the pixel index (i,j) (hence, the same model for f(YijjNij) can be used
when generating pixel values at every spatial location in the im-
age), and the model f(YijjNij) is learned directly in the supervised
learning stage. Since f(YijjNij) is a Bernoulli distribution with event
probability that depends on the neighborhood pixel values, sam-
pling from the conditionals f(YijjNij) is straightforward. The
following is pseudocode for non-causal reconstruction of a
f ðXÞ ¼ f ðX11Þf ðX12jX11Þf ðX13jX11;X12Þ/f
�
Xn1n2 jX11;X12;…;Xn1ðn2�1Þ

¼ f
�
X11

���Xð<11Þ
�
f
�
X12jXð<12Þ

�
f
�
X13jXð<13Þ

�
/f

�
Xn1n2 jXð<n1n2
microstructure image Y (of any specified size s1�s2) based on Gibbs
sampling. The algorithm assumes that f(YijjNij) has already been
learned in the supervised learning stage (Sec. 2.3).

1. Start with an initial image Y(0) of size m1�m2, where m1>s1 and
m2 >s2 (see Sec. 2.4 for initialization)

2. For k¼1,2,…, K
a. Set Y(k)¼Y(k�1)

b. For i¼1,2,…, m1 and j¼1,2,…, m2
�
Þ
�

i. Extract the neighborhood NðkÞ
ij from Y(k)

ii. Use the fitted supervised model to predict the Bernoulli
parameter pij ¼ f ðYij

���NðkÞ
ij Þ and generate Yij~Beroulli(pij).

iii. Use the newly generated phase value Yij to update the
corresponding pixel in Y(k)
3. To avoid boundary inaccuracies (see Sec. 2.4), retain the central
s1�s2 portion of Y(K) as the reconstructed image.

In the preceding reconstruction algorithm, we generate the
pixels in a raster scan order, as illustrated in Fig. 3. In the kth iter-
ation, not every pixel in NðkÞ

ij is available when Yij is close to the
boundaries (see Fig. 3(a)). We refer to this as missing data
throughout the paper. The missing data effect causes reconstruc-
tion inaccuracies near the boundaries of the reconstructed image
that do not disappear even when K becomes large. Therefore, our
strategy is to reconstruct a larger image than required and discard
the boundary regions, choosing the central part as the final
reconstructed image (see Sec. 2.4 for more details).

A potential drawback of the non-causal reconstruction approach
is its computational cost, as K might need to be large. This is
especially true if Y is large and we need to reconstruct multiple
realizations. The value of K primarily depends on (1) howmuch the
initial image differs from the original image and (2) the morpho-
logical complexity of the microstructure. Our studies suggest that K
usually must be more than 50. Next, we introduce a causal recon-
struction approach that avoids this issue.

2.2.2. Causal approach
The joint distribution f(X) can bewritten in the factorial form as:
(1)



Fig. 3. Non-causal reconstruction with neighborhood size w¼h¼2 when pixel (i,j) to be reconstructed is (a) close to the boundary, (b) at the central part. As the numbers indicate,
the image is reconstructed in a raster scan order and the pixels are color-coded to distinguish between the ones that are reconstructed in the current iteration (patterned) and those
that are reconstructed in the previous iteration (white). The colors do not represent phase values. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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whereX(<ij) denotes the set of all the pixels in X ordered before Xij. If
we have all of the conditional distributions in Eq. (1), we can use
this to sequentially generate the pixels in a new random draw Y
from the same distribution f(X) as follows. First generate Y11 from
f(Y11jY(<11) ); then, conditional on Y11, generate Y12 from f(Y12jY(<12))
and so on. Notice that conditional distributions of Yij (for
i¼1,2,…, n1 and j¼1,2,…, n2) in the right-hand side of Eq. (1) only
depend on the pixels previously generated. Thus, the causal
approach reconstructs a new image Y via a single pass over the
pixels in Y. This is a major computational advantage over the non-
causal approach, which must make multiple passes over the pixels
in Y.

Since the conditional distributions f(YijjY(<ij)) are required for
reconstruction, we need to estimate themvia the original image. By
applying the locality assumption of MRF, we
havef ðYijjY ð< ijÞÞ ¼ f ðYij

��Yð< ijÞ∩NijÞ, where the required size of the
neighborhood Nij is not necessarily the same as for the non-causal
approach. Let Mij≡fY ð< ijÞ∩Nijg denote the causal neighborhood of
Yij as illustrated in Fig. 4. Although the number of pixels in Nij is
fixed, that of Y(<ij) depends on how close pixel index (i,j) is to the
boundary. Thus, the number of pixels in Mij (and hence its geom-
etry) is different near the boundaries. One strategy would be to fit a
collection of supervised learning models for f(YijjMij) for causal
neighborhoodsMij of various sizes. That is, fit a supervised learning
Fig. 4. A causal neighborhood of pixel Yij with size w¼h¼2. The color-code is the same
as that in Fig. 1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
model to predict f(YijjYi,j�1), fit a second supervised learning model
to predict f(Yi,jj{Yi,j�1,Yi,j�2}), etc., up to the largest size causal
neighborhood when Nij no longer extends beyond the boundary of
the image. Such a strategy would yield a more exact implementa-
tion of reconstruction sampling via Eq. (1) and would eliminate any
inaccuracies due to boundary approximations. However, fitting
multiple supervised learning models would be cumbersome and
computationally expensive. Consequently, in light of the similarity
between this boundary issue and the boundary issue for the non-
causal reconstruction approach, we simplify the implementation
and fit only a single supervised learningmodel for f(YijjMij) with the
largest size Mij, as illustrated in Fig. 5. Inaccuracies near the
boundary of the reconstructed image are handled as in the non-
causal approach, by generating a larger Y than needed and dis-
carding the boundary (and by using the initialization strategy
outlined in Sec. 2.4).

The following pseudocode summarizes the main steps for
reconstructing an image of arbitrary size s1�s2 via the causal
approach. We note that only the boundaries of the initial Y are
needed in Step 1, due to the causal manner in which the pixels are
generated.

1. Start with an initial image Y of size m1�m2, where m1>s1 and
m2 >s2 (see Sec. 2.4 and Fig. 7 for boundary definition and
initialization).

2. For i¼hþ1, hþ2, …, m1 and j¼wþ1, wþ2,…, m2�w
a. Use the fitted supervised model to predict the Bernoulli

parameter pij¼f(YijjMij) and generate Yij~Beroulli(pij)
b. Use the newly generated Yij to update the corresponding pixel

in Y
3. Pick the central part of Y with size s1�s2 as the new image (see

Fig. 7).
2.3. Supervised learner

To capture the complex spatial stochastic dependencies of the
pixel phases represented via the conditional distribution f(XijjNij)
(or f(XijjMij) for the causal method), we have found that a non-
parametric classification tree [67,68] is particularly well suited to
serve as the supervised learner. The automatic construction of
classification trees from training data dates back to the early 1960s
[69], but they did not receive widespread attention until the 1980s
[69]. An example tree is shown in Fig. 6, in which the root node is



Fig. 5. Causal reconstructionwith neighborhood size w¼h¼2 when pixel (i,j) to be reconstructed is (a) close to the boundary, (b) at the central part. As we choose the largest sizeMij

for reconstructing all the pixels, missing data issue would occur near boundaries. The pixels are color-coded to distinguish the reconstructed ones (patterned pixels) from the pixels
that are not yet reconstructed (white). The colors do not represent phase values. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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located at the top, terminal (leaf) nodes are located at the bottom,
and interior nodes are in between the root and the leaves. Each
non-leaf node represents a split at one specific value for one
particular predictor variable. In short, classification trees partition
the predictor-variable space into regions. Each region corresponds
to one of the leaves and is defined by the sequence of splits from the
root node to that leaf node. Given a tree that has been fitted to a set
of training data (which is automatically done using commercial
software), the response for a new observation is predicted by
traversing down the tree (from the root node to the correct leaf
node) via the sequence of splits that correspond to the set of pre-
dictor variables for the new observation. Each leaf stores a pre-
dicted class probability for the response variable, and this class
probability is estimated as the sample fraction of training obser-
vations with response values in that class, out of the training ob-
servations with predictor values that fell into that leaf. In our case,
each observation corresponds to one pixel (say pixel (i,j)), and Xij

and Nij are the response variable and the set of predictor variables,
respectively, for that observation. Trees are perhaps the most nat-
ural supervised learner for handling categorical variables, and our
response and predictor variables are comprised entirely of cate-
gorical variables (pixel phase values). Trees are also highly inter-
pretable and, as shown in Sec. 3, very computationally efficient to
either fit or make predictions with. Classification tree algorithms,
like any other supervised learning algorithm, have tuning param-
eters that can be adjusted to increase the predictive power (e.g., the
number of hidden layers in a neural network or the maximum
polynomial degree in regression models). An advantage of our
approach is that we can simply use cross-validation (CV) to select
all tuning parameters of the supervised learning algorithm in order
to best approximate f(XijjNij). In this section, we will describe how
to fit a tree to best approximate f(XijjNij) in the non-causal approach.
For the causal approach, the procedure is nearly identical. For
simplicity, we illustrate with a neighborhood size of w¼h¼1 and
explain how to empirically find themost appropriatew and h at the
end of the section.

Recall that by the MRF stationarity assumption, the model
f(XijjNij) does not depend on pixel index (i,j), and it represents the
probability distribution of the predicted phase value at a pixel
location, given the phase values of the neighboring pixels. From the
collection of pixels in the original n1�n2 image X, first we build a
two-dimensional array of data having T¼(n1�2h)�(n2�2w) rows,
where each row is comprised of the “response” variable Xij and the
“predictor” variables in Nij corresponding to one pixel Xij. Denote
this array of training data by D≡{(Xij,Nij), i¼hþ1,hþ2,…,
n1�h; j¼wþ1,wþ2,…, n2�w}. Notice that the boundary pixels in the
training image, for which a full sized neighborhood is not available,
are not used as response variables in the training data D. To illus-
trate, because w¼h¼1 in Fig. 6, there are 8 pixels (predictor vari-
ables) in Nij (denoted by P1, P2, …, P8). After building D, we
considered various off-the-shelf tree fitting algorithms (R [70,71],
MATLAB [72], and Python [73]) to fit a classification tree for pre-
dicting the probability pij¼f(XijjNij) that thematerial state at (i,j) is 1,
given its neighbor Nij. Although similar performance can be ach-
ieved with any of the above software, we used Python for our ex-
amples because it was computationally more efficient.

The common procedure for fitting a tree is to first overgrow
(overfit) it and then prune it to the optimal size via CV [74,75]. CV is
perhaps the most widely used nonparametric method for esti-
mating the predictive power of a model and can be used to opti-
mize the tuning parameters and default settings of any supervised
learning model.

Inaccuracies in the fitted supervised learning model, coupled
with the reconstruction algorithm, can sometimes result in
reconstructed images having different VFs than the original image.
We have found that the overall performance of the reconstruction
approach can sometimes be improved by the following simple
empirical adjustment to the fitted tree to match the VFs of the
original and reconstructed images. Each leaf node in the tree
specifies a predicted probability that Xij¼1. Since the fitted proba-
bilities pij in the leaf nodes are Bernoulli parameters, the corre-
sponding Bernoulli standard deviation is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pijð1� pijÞ

q
. In light of

this, our strategy for matching VFs is to adjust the probability of
every leaf node via

padjustedij ¼ pij þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pij

�
1� pij

�r
; (2)

here the offset parameter c is chosen empirically in the following
manner: We first fit a tree to the original image and then use it to
reconstruct an image. If the VF of the images match, no offset is
needed (i.e., c¼0). However, if the VF of the reconstructed image is
higher (lower) than that of the original image, a small negative
(positive) value is assigned to c and this reconstruction/adjustment
process is carried out again until the VFs match. Typically, only
small values of c are needed. We recommend starting with small
values of c (i.e., c¼±0.001) and increasing-decreasing it as needed.

The geometry (shape and size) of the neighborhood depends on
the structural features (i.e. minimum size of the inclusions) as well
as the reconstruction approach (causal or non-causal). We deter-
mine the optimum neighborhood size in a data-driven manner via
CV by starting with a relatively large neighborhood and shrinking
the size down until the CV error of the fittedmodel does not further
decrease. A nice feature of our approach (see Sec. 3.5) is that its



Fig. 6. Illustrative example for fitting a classification tree to a sample binary microstructure. First, the user chooses an initial size for the neighborhood (here w¼h¼1) to scan the
original image with it. The result of scanning is a training dataset (a 2D numeric matrix) of size T (rows)�9 (columns). Rows in the dataset are constructed by (1) putting the
neighborhood on the image, (2) recording the phase values observed at each pixel in the neighborhood, and (3) rearranging the order of stored values and inserting them in the
dataset. At this point, the user feeds the training dataset to an off-the-shelf tree fitting algorithm (we use Scikit package in Python) to obtain the fitted tree. The tree fitting algorithm
automatically finds and splits the predictors (represented with color-coded squares and denoted by P1 through P8) to best capture the patterns/stochasticity in the dataset. As the
neighborhood size is rather small in this case, all the pixels are used as predictors in the tree. Once the model is fitted, the user can proceed to reconstruct a new image. For
predicting the response of a new observation in general tree-based modeling applications, the user provides the fitted tree with the predictor values for the observation (arranged in
a row) and the tree predicts the probabilities for each response class. The predicted value in our case, is the probability of Xij¼1. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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performance is not highly sensitive to the neighborhood size,
within limits: If the chosen size is larger than that of the optimum
neighborhood, the tree will automatically exclude the unimportant
predictors from the model. If, however, the chosen size is some-
what smaller than that of the optimum neighborhood the tree can
partially compensate for this by building a more complex super-
vised learner. Here, complexity refers to the number of terminal
nodes and not the number of predictors used in the tree.
2.4. Boundary effects and initialization

For both the non-causal and causal reconstructions, as
mentioned earlier we have an issue of missing data at the bound-
aries (Figs. 3(a) and 5(a)) because the neighborhoods extend
beyond the image. To minimize the impact of inaccuracies due to
this boundary issue, we reconstruct a larger image than required
and choose the central part as the new image. Fig. 7 illustrates this
for the causal approach. The patterned blue region of size m1�m2
represents the initial reconstructed image (from Step 1 of the
pseudocode) and is reconstructed using the fitted model
Fig. 7. Avoiding the missing data issue in the causal approach: For reconstructing an
image with the desired size of s1�s2, a larger image of sizem1�m2 is reconstructed. The
green region is added so as the boundary pixels of the patterned blue region have a full
size neighborhood. The same method can be used for the non-causal approach except
that the blue and green regions will also be added to the bottom of the black box. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
for f(XijjMij). The green region is added to the exterior of the blue
region so that its boundary pixels would not have missing data in
their neighborhoods. Since the green region is not updated, the
boundary pixels of the blue region may be adversely affected. To
minimize the adverse effects, we choose the central part of the blue
region of size s1�s2 (shown with a black box) as the final recon-
structed image. The differences m1�s1 and m2�s2 depend on how
we construct the green region: if the green region is pure black or
pure white (all pixels set to 0 or all pixels set to 1), the differences
might need to be on the order of twice the size of the neighborhood
((m1�s1,m2�s2)¼(2h,4w)). However, if it is constructed using the
original image (i.e., by splicing together strips from the original
image), the differences can be set to (h,2w).

We note that, if desired, one could potentially handle the
boundary issues by forcing the reconstructed image to possess
periodic boundaries. However, because reconstruction using our
approach is very computationally efficient, we have taken the
simpler (and we think more robust) approach described above that
generates a larger image than is needed and discards the boundary.

In the non-causal reconstruction, the choice of the initial image
Y(0) directly influences the boundary effects as well as the number
of iterations required for convergence of the Gibbs sampler to a
steady-state sampling distribution. For the causal approach, the
choice for the initial boundary of Y (the green region in Fig. 7) in-
fluences how largem1 andm2 should be to minimize the boundary
effects. We investigated the performance of our approach with
different initial images: (1) pure white/black, (2) pure random, and
(3) generated periodically by splicing copies of the original image
side-by-side (or splicing strips end-to-end for the boundary for the
causal approach). Our studies indicate that the latter produces
better results. Specifically, for the non-causal approach, it not only
alleviates adverse boundary effects, but also requires fewer itera-
tions for convergence of the Gibbs sampler, since Y(0) would be
statistically closer to something drawn from f(Y). For the causal
approach, it mitigates the boundary effects. This choice of initial
image also demonstrates that the algorithm can learn the
randomness of the microstructure and automatically inject it into
the reconstructed image.
3. Results and discussion

In this section, we conduct five examples (EXs) to demonstrate
the proposed approach. The microstructure for each EX has unique
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features that the approach is able to characterize and reconstruct
quite well. We assess performance by comparing the two-point
(S2(r)) and two-point cluster (C2(r)) correlation functions as well
as the lineal-path (L(r)) function of the original and reconstructed
images (see the Appendix for implementation details). All the
functions are calculated for the white phase and compared in terms
of L2 norm. Specifically, we set the longest pairwise distance
(maximum length of the thrown line segment; see the Appendix)
to 100 pixels in all the evaluations. We emphasize that in all of the
examples the results were not sensitive to the neighborhood size
for the range of neighborhood sizes that we considered. In section
3.5, we illustrate the effect of neighborhood size on the character-
ization and reconstruction results.

3.1. EX1: clustered isotropic microstructure

The first example is a bi-phase microstructure with 20.04% silica
in rubber matrix. After preprocessing the image using techniques
such as contrast adjustment [76], median filtering [76], Gaussian
filtering and thresholding, the resulting binary image is shown in
Fig. 8(a). The inclusions form small clusters and possess neither a
particular geometry nor any apparent regular spatial distribution
pattern other than a stochastic spatial behavior.

We used the causal approach and fitted a tree supervised learner
to the training image in Fig. 8(a) to estimate f(XijjMij). This model
can be subsequently used to reconstruct as many statistically
equivalent microstructure samples as desired, two representative
samples of which are shown in Fig. 8(b) and (c). Details on the fitted
parameters, computational costs, and statistical evaluations are
given in Table 1 and Table 2. In this example, we set the neigh-
borhood size tow¼h¼5. As the neighborhood size is quite small, all
the predictors are found to be important (retained in the model)
and the tree has many leaves (see the last two columns of Table 1).

Visual inspection of the images in Fig. 8 indicates that the al-
gorithm captures the stochasticity of the original structure. As the
first two rows of Table 1 show, the computational cost (the sum of
Char. and Rec. costs) is quite small, and this is of particular interest
if a batch of images are reconstructed. In particular, the recon-
struction is done almost instantaneously. In addition, Fig. 9(a) and
(b) show that the correlation and lineal-path functions of the
original and reconstructed images agree, from which we conclude
that the supervised learner captures the short-range spatial de-
pendencies in the microstructure quite well (see Sec. 3.5 for an
example with long-range correlations). Table 2 lists summary
measures of the overall differences in the VF and correlation
functions for each reconstructed realization. In this example, the
neighborhood size is quite close to the range after which the cor-
relations die out (see Fig. 9(b)), although this relationship does not
Fig. 8. EX1: (a) The original training image with 20.04% silica in a rubber matrix, (b, c) Two d
model that is fitted to the training image in (a). The numbers are pixel indices, and the im
necessarily have to hold (e.g., in a first-order autoregressive time
series, the correlations may decay very slowly, while a neighbor-
hood size of only one suffices for characterization). We further
investigate the link between the effective correlation range and
neighborhood size in EX5.
3.2. EX2: polymer nanocomposite

Fig. 10(a) illustrates the microstructure of interest in this
example; a dielectric nanocomposite with 1.43% VF of silica. This
structure is of particular interest as (1) the low VF of the secondary
phase means the supervised learner must learn the morphology
with scarce data on one phase, and (2) the stationary MRF as-
sumptions may not be entirely satisfied at least not for the scale of
the training image (i.e., the local VF changes quite dramatically).

We used the causal approach and set the neighborhood size
to (h¼w¼5). The reconstruction results, shown in Fig. 10(b) and (c),
are visually appealing, and the statistical evaluations (see Fig. 11)
indicate that they agree well with the original structure. We note
that, as in EX1, the fitted tree in EX2 finds all the predictors in the
neighborhood to be important but has far less leaves (240 vs. 917)
and is much less complex than the tree in EX2. These findings are in
line with the fact that the microstructure in Fig. 9 is visually more
complex than that in Fig. 10.
3.3. EX3: perfectly geometric inclusions

In this example we apply our approach to a structure with cir-
cular inclusions (radius of r¼5 pixels). The inclusions are placed
randomly and have a prescribed minimum nearest neighbor dis-
tance of d¼5 pixels. In the ideal case, the algorithm is expected to
automatically identify not only the geometry of the inclusions but
also the constraint on their spatial distribution.

We used the causal approach and set the neighborhood size
to (h¼w¼15). Had we not known r and d, we simply would have
had to choose a large enough neighborhood to make sure all
necessary features are captured. As the VF of the first reconstructed
image was slightly above that of the original structure, we set the
offset parameter to �0.001. Fig. 12(b) and (c) illustrate the recon-
structed structures and indicate, along with statistical evaluations
in (Fig.13), that the supervised learner has effectively learned both r
and d. We note, however, that sometimes the reconstructions
might include an irregular inclusion that is not a perfect circle,
although usually quite close (i.e. Fig. 12(c)). We address this issue in
Sec. 4.
ifferent reconstructed images representing two random realizations generated from the
ages are reconstructed via the causal approach.



Table 1
The fitted parameters and computational costs for all the examples. The characterization (Char.) cost includes the total cost of fitting the tree. The reconstruction (Rec.) cost is
associated with reconstructing the patterned blue region in Fig. 7. The last two columns enumerate the number of leaves and predictors (out of all the initial predictors) in the
fitted tree. See Fig. 4 for the definition of window size.

Example Window size Char. cost (s) Rec. cost (s) Offset Leaf count Retained predictors

1, Realization 1 (5, 5) 0.31 0.49 0 917 60/60
1, Realization 2 � � 0.48 0 � �
2, Realization 1 (5, 5) 0.46 0.43 0 240 60/60
2, Realization 2 � � 0.43 0 � �
3, Realization 1 (15, 15) 2.43 0.44 � 0.001 176 123/480
3, Realization 2 � � 0.45 � 0.001 � �
4, Realization 1 (15, 15) 2.38 0.84 0 369 238/480
4, Realization 2 � � 0.86 0 � �
5, Small window (5, 5) 0.26 0.49 0 473 60/60
5, Large window (20, 20) 3.79 0.67 0 344 273/840

Table 2
L2 norm errors in point correlation and lineal-path functions, as well as errors in VF
between the reconstructed images and the corresponding original ones.

Example jVFOriginal�VFRec.j DS2(r) DC2(r) DL(r)

1, Realization 1 0.000% 1.04% 0.63% 0.57%
1, Realization 2 0.002% 1.65% 1.79% 1.93%
2, Realization 1 0.00% 4.62% 2.65% 2.48%
2, Realization 2 0% 4.76% 2.97% 1.39%
3, Realization 1 0.000% 2.87% 2.25% 1.82%
3, Realization 2 0.001% 2.92% 1.44% 1.32%
4, Realization 1 0.000% 3.42% 3.77% 4.51%
4, Realization 2 0.000% 1.64% 2.78% 4.21%
5, Small window 0.003% 7.1% 1.88% 2.92%
5, Large window 0.000% 5.51% 3.18% 4.47%
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3.4. EX4: porous medium

The porous microstructure of interest (Fig. 14(a)) is a slice of
Fontainebleau sandstone (Fig. 6 of [26]) with pores occupying
Fig. 9. (a) Two-point correlation, (b) two-point cluster correlation, and (c) lineal-path functi
indicate the L2 norm errors.

Fig. 10. EX2: (a) The polymer nanocomposite with 1.43% of silica, (b, c) Two different recons
numbers are pixel indices, and the images are reconstructed via the causal approach.
21.93% of the volume. We used the causal approach and, as the
general size of the poreswas rather large, set the neighborhood size
to (h¼w¼15). Details of the fitted model are summarized in Table 1.

The reconstructed porous structures are illustrated in Fig. 14(b)
and (c) and compared to the original one in Fig. 15 (details in
Table 2). As it can be observed the statistical equivalency is quite
well preserved. We note that, as Fig. 15(b) illustrates, the correla-
tions almost die out beyond r¼20 pixels. Although this distance is
quite close to the neighborhood size we chose for this example, the
results would be similar had we chosen a moderately larger
neighborhood (see EX5).
3.5. EX5: anisotropic structure

To test the performance of the algorithm on anisotropic mi-
crostructures and investigate whether the reconstruction order (i.e.
the raster scan direction) affects the results, we diagonally
stretched an isotropic structure to create an anisotropic structure
with VF of 34.53% (Fig. 16(a)). As in the previous examples, we used
ons for the original and two reconstructed images in EX1. The numbers in parentheses

tructed images generated from the model that is fitted to the training image in (a). The



Fig. 11. (a) Two-point correlation, (b) two-point cluster correlation, and (c) lineal-path functions for the original and two reconstructed images in EX2. The numbers in parentheses
indicate the L2 norm errors.

Fig. 12. EX3: (a) The original image with 10.35% VF, (b, c) Two different reconstructed images. The numbers are pixel indices, and the images are reconstructed via the causal
approach.

Fig. 13. (a) Two-point correlation, (b) two-point cluster correlation, and (c) lineal-path functions for the original image and the realizations in EX3. The numbers in parentheses
indicate the L2 norm errors.

Fig. 14. EX4: (a) The original porous structure with 21.93% pores, (b, c) Two different reconstructed images. The numbers are pixel indices, and the images are reconstructed via the
causal approach.
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the causal approach, but this time we fitted two models with
different neighborhood sizes: a small one (h¼w¼5) and a large
one (h¼w¼20).

The reconstruction results are illustrated in Fig.16(b) and (c) and
compared to the original microstructure in Fig. 17 (comparison is
along the direction of anisotropy; the other diagonal direction had
similar results). As these results show, the algorithm is not signif-
icantly sensitive to the neighborhood size and performs almost



Fig. 15. (a) Two-point correlation, (b) two-point cluster correlation, and (c) lineal-path functions for the original image and the realizations in EX4. The numbers in parentheses
indicate the L2 norm errors.

Fig. 16. EX5: (a) The original diagonally anisotropic image with VF¼34.53%, (b) the reconstructed image with neighborhood size (h¼w¼5), and (c) the reconstructed image with
neighborhood size (h¼w¼20). The numbers are pixel indices, and the images are reconstructed via the causal approach.

Fig. 17. Unidirectional (diagonal) (a) two-point correlation, (b) two-point cluster correlation, and (c) lineal-path functions for the original and reconstructed images in EX5. The
numbers in parentheses indicate the L2 norm errors.
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equally well in both cases. To explain this, we note that (1) while
the tree with small neighborhood has retained all the pre-
dictors (60 out of 60), the tree with large neighborhood has
retained only about one third of the predictors (273 out of 840), and
(2) the tree with the smaller neighborhood is more complex and
has more leaves (473 vs. 374). These points indicate that the small
neighborhood has resulted in the tree being grown larger to
partially compensate for the (possible) shortage in the number of
predictors.

Although Fig. 17 indicates that the statistical equivalency is quite
well preserved, a closer look at Fig. 16 shows that the white phase
appears to have a slightly different long-range connectivity in the
reconstructed images than in the original one, and there is some
noise in the results.We speculate that more complex characteristics
like connectivity potentially can be better preserved if one were to
use an extension of our approach that includes additional user-
defined variables and rules (e.g., related to connectivity) as auxil-
iary predictor variables in the supervised learning model. Allowing
additional predictors to be included is one advantage of the general
supervised learning approach. We briefly discuss this extension in
Sec. 4.
4. Conclusion and future works

Microstructure characterization and reconstruction of statisti-
cally equivalent samples are of major importance in computational
materials engineering. The primary goal of this paper is to develop,
for the first time to the best of our knowledge, a supervised learning
approach for the characterization and reconstruction of a broad
range of stochastic microstructures. The approach begins by con-
verting a digitized microstructure image into a set of training data,
to which a supervised learning model is fitted to learn the complex
stochastic spatial behavior and dependencies of the pixel phases.
This relatively compact model is subsequently used to reconstruct
any number of statistically equivalent microstructure samples. We
have developed two variants of the approach, one causal and one
non-causal, which involve single-pass and multi-pass reconstruc-
tion schemes, respectively.

We have demonstrated that the fitted supervised learning
model provides an implicit representation of the full joint distri-
bution f(X) of the phase values of all the pixels in themicrostructure
image. In theory, the joint distribution provides the most complete
and generic representation of the microstructure nature, from
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which all other stochastic properties can be derived. In practice, the
quality of this implicit representation of the joint distribution de-
pends on the ability of the supervised learningmodel to capture the
conditional distributions f(XijjNij), as well as on the validity of the
locality and stationarity MRF assumptions. In our examples, which
cover a range of stochastic materials with different characteristics
(clustered, porous, and anisotropic), the reconstruction results (see
Figs. 8e17) indicate that the classification tree supervised learning
model did a reasonable job of learning the stochastic microstruc-
ture behavior, and the reconstruction algorithm did a reasonable
job of preserving it in the reconstructed images.

We believe that the main advantages of our approach stem from
having a compact yet generic model. This not only makes the
approach computationally efficient, but also provides insight into
material's structure. As we showed, different models can be
compared (in terms of the number of leaves or predictors) with
each other to demonstrate the similarities/differences in stochastic
spatial pixel dependencies in different microstructures.

The tree-fitting and reconstruction costs depend on the size
and complexity of the original image. In general, the larger the
desired size of the reconstructed image, the more expensive it will
be to reconstruct it (the complexity of the tree also affects the
reconstruction cost but not as strongly as the desired size).
However, for a fitted model, the reconstruction cost increases
linearly with the number of pixels in the reconstructed image and
hence is quite manageable even for large structures. The tree-
fitting (characterization) cost is directly (and nonlinearly) related
to the morphology and increases as the microstructure becomes
more complex (as larger neighborhoods and more complex trees
are required in these cases). The size of the original image also
affects the tree-fitting cost as it (along with the neighborhood
size) determines the size of the dataset. However, for general su-
pervised learning applications, trees are widely regarded as being
computationally efficient to fit and scaling up nicely to large size
datasets.

We believe the foundation of our approach is novel and has
many potential extensions that are currently under investigation.
The focus in this paper is on 2D reconstructions of bi-phase ma-
terials. Extension to multi-phase is straightforward and only re-
quires a supervised learning method that can handle a categorical
response with more than two categories, which trees (and many
other supervised learners) can do automatically. Extension to 3D
reconstruction is conceptually straightforward if 3D training im-
ages (e.g., a stack of 2D slices) are available. If we only have 2D
training images, extension to 3D reconstruction is more challenging
and nontrivial, although we anticipate using ensemble/voting
methods of supervised learning to combine different predictive
models learned from a collection of 2D training images. In addition,
although our method can be applied to microstructures with
perfectly geometric (e.g., perfectly circular or ellipsoidal) inclusions,
it typically will reconstruct inclusions that have approximately, but
not exactly, the same perfect geometry (see Fig. 12(c)). For such
cases, we anticipate a hybrid approach in which supervised
learning is used to learn the spatial stochastic distribution of the
particle centroids (and size, orientation, and other characteristics, if
relevant), and the reconstruction phase is used to generate the
particle centroids, with the known geometric information being
used to fully generate the particles.

Finally, in our supervised learningmodel, the predictor variables
were comprised entirely of individual pixel phases, and no user-
defined predictors were incorporated into the model. However,
the approach can be extended by including any additional physi-
cally meaningful predictors. For example, the average phase values
over meaningful sets of pixels can be regarded as a single predictor
or an additional binary rule (e.g., one that predicts the probability of
the phase value if all the immediate neighbor pixels are in phase 0)
can be learned and subsequently used in the reconstruction. These
extensions are of particular interest for enabling the algorithm to
better capture the long-range connectivity.
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Appendix. Correlation and lineal-path functions

Following the notation introduced in Sec. 2.1, we have:

Xij ¼
�
1 if ij2phase1
0 otherwise

;

here, ij is the pixel index and determines its location within the
image. Denoting this location by the vector r, the two-point cor-
relation function for phase i can be defined as:

SðiÞ2 ðr1; r2Þ ¼ Xðr1ÞXðr2Þ

where the angular brackets denote the expectation operator. SðiÞ2
can be thought of as the probability of tossing a line on X and having
both its ends land on phase i. If X is statistically homogeneous and
isotropic, SðiÞ2 will only depend on the distance between the two
points (SðiÞ2 ðr1; r2Þ ¼ SðiÞ2 ðDr12Þ¼SðiÞ2 ðjDr12jÞ). Hence, for a homoge-
neous and isotropic material, SðiÞ2 has a simplified formulation and
can be efficiently calculated (i.e. via FFT [77]).

If the aforementioned two assumptions are not satisfied, other
methods (i.e. Monte Carlo) need to be used. For example, for the
anisotropic structure in EX5, we use an MC sampling procedure as
follows: A diagonally-aligned line with length lk (0�k�K) is first
randomly thrown on X for a total of N times. Next, the number of
times that the thrown line has both its ends in phase i is calculated
and then divided by N. This process is done for all k and the result is
plotted in Fig. 17 (we chose the maximum length as half of the
original image size). We note that the above procedure needs to be
done in all directions but we limit ourselves to a diagonal one since
it has the strongest correlations.

Two-point cluster correlation function (CðiÞ
2 ) is similar to SðiÞ2 but

it requires the end points of the thrown line to be in the same
cluster. For an anisotropic structure (i.e., EX5), the described MC
method, with the addition of a constraint, can be used. For isotropic
structures, we use the pixelepixel distance histogram as follows:
First, the distance between any two pixels that belong to one
cluster and have phase i is calculated and a histogram of the dis-
tances is built. Then, this process is done for any two pixels in the
image to build another histogram. The ratio of the histograms gives
the cluster correlation function.

Lineal-path function (L(i)) is also similar to SðiÞ2 in that it captures
the probability of randomly throwing a line on X and having the
whole line land on phase i. In all of our EXs, we chose one direction
(vertical and diagonal directions for, respectively, isotropic and
anisotropic) for calculating L(i) by using the histogram method
explained above except that this time the constraint requires the
whole line to be in phase i.
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